## Chemistry

## Chemistry

Julia Burdge

COLLEGE OF WESTERN IDAHO

## CHEMISTRY, FOURTH EDITION

Published by McGraw-Hill Education, 2 Penn Plaza, New York, NY 10121. Copyright © 2017 by McGraw-Hill Education. All rights reserved. Printed in the United States of America. Previous editions © 2014, 2011, and 2009. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of McGraw-Hill Education, including, but not limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the United States.

This book is printed on acid-free paper.
1234567890 DOW/DOW 109876
ISBN 978-0-07-802152-7
MHID 0-07-802152-9
Senior Vice President, Products \& Markets: Kurt L. Strand
Vice President, General Manager, Products \& Markets: Marty Lange
Vice President, Content Design \& Delivery: Kimberly Meriwether David
Managing Director: Thomas Timp
Director: David Spurgeon, Ph.D.
Director, Product Development: Rose Koos
Director of Digital Content: Shirley Hino, Ph.D.
Marketing Director, Physical Sciences: Tamara L. Hodge
Marketing Manager: Matthew Garcia
Digital Product Anaylst: Patrick Diller
Product Developer: Robin Reed
Director, Content Design \& Delivery: Linda Avenarius
Program Manager: Lora Neyens
Content Project Managers: Sherry Kane / Rachael Hillebrand
Buyer: Sandy Ludovissy
Content Licensing Specialist: Lori Hancock / DeAnna Dausener
Cover/Interior Designer: David Hash
Cover Image: water over black background ©robert_s/Shutterstock; black mesh background ©Piotr Zajc/Getty Images
Compositor: Aptara ${ }^{\circledR}$, Inc.
Printer: R. R. Donnelley
All credits appearing on page or at the end of the book are considered to be an extension of the copyright page.

## Library of Congress Cataloging-in-Publication Data

Burdge, Julia.
Chemistry / Julia Burdge, College of Western Idaho. - 4 edition. pages cm
Includes index.
ISBN 978-0-07-802152-7 (alk. paper) — ISBN 0-07-802152-9 (alk. paper) 1. Chemistry-
Textbooks. I. Title.
QD33.2.B865 2015
540-dc23

## 2015032146

The Internet addresses listed in the text were accurate at the time of publication. The inclusion of a website does not indicate an endorsement by the authors or McGraw-Hill Education, and McGraw-Hill Education does not guarantee the accuracy of the information presented at these sites.

## About the Author



Julia Burdge received her Ph.D. (1994) from the University of Idaho in Moscow, Idaho. Her research and dissertation focused on instrument development for analysis of trace sulfur compounds in air and the statistical evaluation of data near the detection limit.

In 1994, she accepted a position at The University of Akron in Akron, Ohio, as an assistant professor and director of the Introductory Chemistry program. In the year 2000, she was tenured and promoted to associate professor at The University of Akron on the merits of her teaching, service, and research in chemistry education. In addition to directing the general chemistry program and supervising the teaching activities of graduate students, she helped establish a future-faculty development program and served as a mentor for graduate students and post-doctoral associates. Julia has recently relocated back to the northwest to be near family. She lives in Boise, Idaho, and holds an adjunct faculty position at the College of Western Idaho in Nampa.

In her free time, Julia enjoys precious time with her three children, and with Erik Nelson, her partner and best friend.

To the people who will always matter the most: Katie, Beau, and Sam.

## Brief Contents

1 Chemistry: The Central Science ..... 2
2 Atoms, Molecules, and Ions ..... 38
3 Stoichiometry: Ratios of Combination ..... 82
4 Reactions in Aqueous Solutions ..... 128
5 Thermochemistry ..... 186
6 Quantum Theory and the Electronic Structure of Atoms ..... 232
7 Electron Configuration and the Periodic Table ..... 282
8 Chemical Bonding I: Basic Concepts ..... 324
9 Chemical Bonding II: Molecular Geometry and Bonding Theories ..... 370
10 Gases ..... 422
11 Intermolecular Forces and the Physical Properties of Liquids and Solids ..... 482
12 Modern Materials ..... 532
13 Physical Properties of Solutions ..... 562
14 Chemical Kinetics ..... 606
15 Chemical Equilibrium ..... 662
16 Acids and Bases ..... 718
17 Acid-Base Equilibria and Solubility Equilibria ..... 778
18 Entropy, Free Energy, and Equilibrium ..... 832
19 Electrochemistry ..... 876
20 Nuclear Chemistry ..... 922
21 Environmental Chemistry ..... 956
22 Coordination Chemistry ..... 982
23 Metallurgy and the Chemistry of Metals ..... 1008
24 Nonmetallic Elements and Their Compounds ..... 1032
25 Organic Chemistry ..... 1062
Appendix 1 Mathematical Operations ..... A-1
Appendix 2 Thermodynamic Data at 1 ATM and $25^{\circ} \mathrm{C}$ ..... A-6
Appendix 3 Solubility Product Constants at $25^{\circ} \mathrm{C}$ ..... A-12
Appendix 4 Dissociation Constants for Weak Acids and Bases at $25^{\circ} \mathrm{C}$ ..... A-14

## Contents

Preface ..... xxii
Acknowledgments ..... XXViii
1 CHEMISTRY: THE CENTRAL SCIENCE ..... 2
1.1 The Study of Chemistry ..... 4- Chemistry You May Already Know 4- The Scientific Method 4

- What Do Molecules Look Like? ..... 5
1.2 Classification of Matter ..... 6
- States of Matter 6 • Elements ..... 7
Compounds 7 • Mixtures ..... 7
1.3 Scientific Measurement ..... 8
- SI Base Units 8 • Mass ..... 8
- Temperature ..... 10
- Fahrenheit Temperature Scale ..... 11
- Derived Units: Volume and Density ..... 12
- Why Are Units So Important? ..... 14
1.4 The Properties of Matter ..... 14
- Physical Properties ..... 14
- Chemical Properties ..... 14
- Extensive and Intensive Properties ..... 15
1.5 Uncertainty in Measurement ..... 16
- Significant Figures 17 • Calculations with Measured Numbers ..... 18
- Accuracy and Precision ..... 20
1.6 Using Units and Solving Problems ..... 22
- Conversion Factors ..... 22
- How Can I Enhance My Chances of Success in Chemistry Class? ..... 23
- Dimensional Analysis-Tracking Units ..... 23
2 ATOMS, MOLECULES, AND IONS ..... 38
2.1 The Atomic Theory ..... 40
2.2 The Structure of the Atom ..... 43
- Discovery of the Electron 43 • Radioactivity ..... 44- The Proton and the Nucleus 45 • NuclearModel of the Atom 46 • The Neutron 47
2.3 Atomic Number, Mass Number, and Isotopes ..... 48
2.4 The Periodic Table ..... 50
- Distribution of Elements on Earth ..... 51
2.5 The Atomic Mass Scale and Average Atomic Mass ..... 51
2.6 Ions and Ionic Compounds ..... 54
- Atomic lons 54 • Polyatomic lons 55 - Formulas of lonic Compounds ..... 56
- Naming lonic Compounds 58 • Oxoanions 59 • Hydrates ..... 60
2.7 Molecules and Molecular Compounds ..... 61
- Molecular Formulas 61 • Naming Molecular Compounds 62 • Simple Acids ..... 64
- Oxoacids 64 • Empirical Formulas of Molecular Substances ..... 66
2.8 Compounds in Review ..... 69
3 STOICHIOMETRY: RATIOS OF COMBINATION ..... 82
3.1 Molecular and Formula Masses ..... 84
3.2 Percent Composition of Compounds ..... 85
3.3 Chemical Equations ..... 87
- Interpreting and Writing Chemical Equations ..... 87
- Balancing Chemical Equations ..... 88
- The Stoichiometry of Metabolism ..... 91
3.4 The Mole and Molar Masses ..... 93
- The Mole 93 • Determining Molar Mass ..... 96

- Interconverting Mass, Moles, and Numbers ofParticles 96 . Empirical Formula from Percent Composition 98
3.5 Combustion Analysis ..... 99
- Determination of Empirical Formula 99 • Determination of Molecular Formula ..... 100
3.6 Calculations with Balanced Chemical Equations ..... 102
- Moles of Reactants and Products 102 • Mass of Reactants and Products ..... 104
3.7 Limiting Reactants ..... 105
- Determining the Limiting Reactant 105 - Reaction Yield ..... 107
Limiting Reactant Problems ..... 108
- Types of Chemical Reactions ..... 111


## 4

REACTIONS IN AQUEOUS SOLUTIONS
4.1 General Properties of Aqueous Solutions ..... 130

- Electrolytes and Nonelectrolytes ..... 130
- Strong Electrolytes and Weak Electrolytes ..... 130
- Identifying Electrolytes ..... 132
4.2 Precipitation Reactions ..... 134
- Solubility Guidelines for Ionic Compounds in Water 135 • Molecular Equations 136 • Ionic Equations 137 • Net Ionic Equations 137

4.3 Acid-Base Reactions ..... 139
- Strong Acids and Bases 139 • Brønsted Acids and Bases ..... 140
- Acid-Base Neutralization ..... 142
4.4 Oxidation-Reduction Reactions ..... 144
- Oxidation Numbers 146 • Oxidation of Metals in Aqueous Solutions ..... 148
- Balancing Simple Redox Equations ..... 150
- Other Types of Redox Reactions ..... 152
4.5 Concentration of Solutions ..... 154
- Molarity ..... 155
Preparing a Solution from a Solid ..... 156
- Dilution 158 • Serial Dilution 159 • Solution Stoichiometry ..... 161
- How Are Solution Concentrations Measured? ..... 163
4.6 Aqueous Reactions and Chemical Analysis ..... 164
- Gravimetric Analysis 164 • Acid-Base Titrations 166 • Redox Titration ..... 169
5 THERMOCHEMISTRY ..... 186
5.1 Energy and Energy Changes ..... 188
- Forms of Energy 188 • Energy Changes inChemical Reactions 188 • Units of Energy189
5.2 Introduction to Thermodynamics ..... 191
- States and State Functions ..... 192
- The First Law of Thermodynamics ..... 193
- Work and Heat ..... 193
5.3 Enthalpy ..... 195
- Reactions Carried Out at Constant Volumeor at Constant Pressure195
- Enthalpy and Enthalpy Changes ..... 197
- Thermochemical Equations ..... 198
5.4 Calorimetry ..... 200

- Specific Heat and Heat Capacity 200
- Constant-Pressure Calorimetry 201
Determination of $\Delta H_{\mathrm{rxn}}^{\circ}$ by Constant-Pressure Calorimetry ..... 202
- Heat Capacity and Hypothermia ..... 205
Determination of Specific Heat by Constant-Pressure Calorimetry ..... 206
- Constant-Volume Calorimetry ..... 208
- What if the Heat Capacity of the Calorimeter Isn't Negligible? ..... 210
5.5 Hess's Law ..... 210
5.6 Standard Enthalpies of Formation ..... 212
6 QUANTUM THEORY AND THE ELECTRONIC STRUCTURE OF ATOMS ..... 232
6.1 The Nature of Light ..... 234
- Properties of Waves ..... 234
- The Electromagnetic Spectrum ..... 235
- The Double-Slit Experiment ..... 235
6.2 Quantum Theory ..... 237
- Quantization of Energy ..... 237
- Laser Pointers ..... 238
- Photons and the Photoelectric Effect ..... 239
- Where Have I Encountered the Photoelectric Effect? ..... 240
6.3 Bohr's Theory of the Hydrogen Atom ..... 242
- Atomic Line Spectra 243 • The Line Spectrum of Hydrogen ..... 244
Emission Spectrum of Hydrogen ..... 246
Lasers ..... 249
6.4 Wave Properties of Matter ..... 250
- The de Broglie Hypothesis 250 • Diffraction of Electrons ..... 252
6.5 Quantum Mechanics ..... 253
- The Uncertainty Principle 253 • The Schrödinger Equation ..... 254
- The Quantum Mechanical Description of the Hydrogen Atom ..... 255
6.6 Quantum Numbers ..... 255
- Principal Quantum Number (n) 255 • Angular Momentum Quantum Number $(\ell)$ ..... 256
- Magnetic Quantum Number $\left(m_{\epsilon}\right) 256$ • Electron Spin Quantum Number $\left(m_{s}\right)$ ..... 257
6.7 Atomic Orbitals ..... 259- s Orbitals 259 • p Orbitals 260 • d Orbitals and Other Higher-EnergyOrbitals 260 • Energies of Orbitals 261
6.8 Electron Configuration ..... 262- Energies of Atomic Orbitals in Many-Electron Systems 262 • The Pauli ExclusionPrinciple 263 • The Aufbau Principle 264 • Hund's Rule 264 • General Rulesfor Writing Electron Configurations 265
6.9 Electron Configurations and the Periodic Table ..... 266
7
7.1 Development of the Periodic Table ..... 284ELECTRON CONFIGURATION AND THE PERIODIC TABLE
- The Chemical Elements of Life ..... 286
7.2 The Modern Periodic Table ..... 287
- Classification of Elements ..... 287
- Why Are There Two Different Sets of Numbers at the Top of the Periodic Table? ..... 289
- Representing Free Elements in Chemical Equations ..... 290
7.3 Effective Nuclear Charge ..... 290
7.4 Periodic Trends in Properties of Elements ..... 291
- Atomic Radius 291 • Ionization Energy ..... 293
- Electron Affinity 295 • Metallic Character ..... 297
- Explaining Periodic Trends ..... 298
7.5 Electron Configuration of Ions ..... 299
- Ions of Main Group Elements ..... 299
- Ions of d-Block Elements ..... 300
7.6 Ionic Radius ..... 302
- Comparing lonic Radius with Atomic Radius 302 • Isoelectronic Series ..... 302
7.7 Periodic Trends in Chemical Properties of the Main Group Elements ..... 304
- General Trends in Chemical Properties 305 • Properties of the Active
Metals 305 • Properties of Other Main Group Elements ..... 307
- Comparison of Group 1A and Group 1B Elements ..... 311
- Radioactive Bone ..... 312
- Variation in Properties of Oxides Within a Period ..... 312
8 CHEMICAL BONDING I: BASIC CONCEPTS ..... 324
8.1 Lewis Dot Symbols ..... 326
8.2 Ionic Bonding ..... 328
- Lattice Energy 328 • The Born-Haber Cycle ..... 330
Born-Haber Cycle ..... 332
8.3 Covalent Bonding ..... 334
- Lewis Structures 335 • Multiple Bonds ..... 335- Comparison of Ionic and CovalentCompounds336
8.4 Electronegativity and Polarity ..... 336
- Electronegativity 337 • Dipole Moment, Partial Charges, and Percent Ionic Character 339282

8.5 Drawing Lewis Structures ..... 343
8.6 Lewis Structures and Formal Charge ..... 345
8.7 Resonance ..... 348
8.8 Exceptions to the Octet Rule ..... 350
- Incomplete Octets 350 • Odd Numbers of Electrons ..... 351
- The Power of Radicals ..... 351
- Expanded Octets ..... 352
- Which Is More Important: Formal Charge or the Octet Rule? ..... 352
8.9 Bond Enthalpy ..... 354
9 CHEMICAL BONDING II: MOLECULAR GEOMETRY AND BONDING THEORIES ..... 370
9.1 Molecular Geometry ..... 372
- The VSEPR Model 372 • Electron-Domain
Geometry and Molecular Geometry ..... 374
- Deviation from Ideal Bond Angles ..... 377
- Geometry of Molecules with More than One
Central Atom ..... 377
- How Are Larger, More Complex Molecules Represented? ..... 379
9.2 Molecular Geometry and Polarity ..... 380
- Can More Complex Molecules Contain Polar Bonds and Still Be Nonpolar? ..... 381
9.3 Valence Bond Theory ..... 382
- Representing Electrons in Atomic Orbitals ..... 382
- Energetics and Directionality of Bonding ..... 384
9.4 Hybridization of Atomic Orbitals ..... 385
- Hybridization of $s$ and $p$ Orbitals ..... 386
- Hybridization of $s, p$, and $d$ Orbitals ..... 390

9.5 Hybridization in Molecules Containing Multiple Bonds ..... 393
Formation of Pi Bonds in Ethylene and Acetylene ..... 398
9.6 Molecular Orbital Theory ..... 400
- Bonding and Antibonding Molecular Orbitals 400 • $\sigma$ Molecular Orbitals ..... 401
- Bond Order 402 • $\pi$ Molecular Orbitals 402 • Molecular Orbital Diagrams ..... 405
- Molecular Orbitals in Heteronuclear Diatomic Species ..... 405
9.7 Bonding Theories and Descriptions of Molecules with Delocalized Bonding ..... 407
10.1 Properties of Gases ..... 424
- Characteristics of Gases 424 • Gas Pressure:
Definition and Units 425 - Calculation ofPressure 426 • Measurement of Pressure 427
10.2 The Gas Laws ..... 429
- Boyle's Law: The Pressure-Volume Relationship ..... 429
- Charles's and Gay-Lussac's Law: The Temperature-Volume Relationship 432 • Avogadro's Law: TheAmount-Volume Relationship 434 • The CombinedGas Law: The Pressure-Temperature-Amount-Volume
Relationship ..... 435

10.3 The Ideal Gas Equation ..... 437
- Deriving the Ideal Gas Equation from the Empirical Gas Laws ..... 437
- Applications of the Ideal Gas Equation ..... 439
10.4 Reactions with Gaseous Reactants and Products ..... 442
- Calculating the Required Volume of a Gaseous Reactant ..... 442
- Determining the Amount of Reactant Consumed Using Change in Pressure ..... 443
- Predicting the Volume of a Gaseous Product ..... 444
10.5 Gas Mixtures ..... 446
- Dalton's Law of Partial Pressures 446 • Mole Fractions ..... 447
- Using Partial Pressures to Solve Problems ..... 448
- Hyperbaric Oxygen Therapy ..... 450
Molar Volume of a Gas ..... 452
10.6 The Kinetic Molecular Theory of Gases ..... 454
- Application to the Gas Laws 455 • Molecular Speed ..... 457
- Diffusion and Effusion ..... 458
10.7 Deviation from Ideal Behavior ..... 461
- Factors That Cause Deviation from Ideal Behavior ..... 461
- The van der Waals Equation ..... 461
- What's Really the Difference Between Real Gases and Ideal Gases? ..... 462
11 INTERMOLECULAR FORCES AND THE PHYSICAL PROPERTIES OF LIQUIDS AND SOLIDS 482
11.1 Intermolecular Forces ..... 484
- Dipole-Dipole Interactions ..... 484
- Hydrogen Bonding ..... 485
- Sickle Cell Disease ..... 486
- Dispersion Forces ..... 488
- Ion-Dipole Interactions ..... 490
11.2 Properties of Liquids ..... 490
- Surface Tension 490 • Viscosity ..... 491
- Vapor Pressure ..... 492
11.3 Crystal Structure ..... 496
- Unit Cells 496 • Packing Spheres ..... 497
- Closest Packing ..... 498

11.4 Types of Crystals ..... 501
- Ionic Crystals ..... 501
- How Do We Know the Structures of Crystals? ..... 502
- Covalent Crystals 505 • Molecular Crystals 506 • Metallic Crystals ..... 506
11.5 Amorphous Solids ..... 508
11.6 Phase Changes ..... 509
- Liquid-Vapor Phase Transition 509 • Solid-Liquid Phase Transition ..... 511
- Solid-Vapor Phase Transition ..... 512
- The Dangers of Phase Changes ..... 512
11.7 Phase Diagrams ..... 514
12 MODERN MATERIALS ..... 532
12.1 Polymers ..... 534- Addition Polymers 534 • CondensationPolymers 539
Electrically Conducting Polymers ..... 542
12.2 Ceramics and Composite Materials ..... 544
- Ceramics 544 • Composite Materials ..... 545
12.3 Liquid Crystals ..... 545
12.4 Biomedical Materials ..... 548
- Dental Implants ..... 549 . Soft Tissue
Materials 549 • Artificial Joints
Materials 549 • Artificial Joints ..... 550 ..... 550
12.5 Nanotechnology ..... 551
- Graphite, Buckyballs, and Nanotubes ..... 551
12.6 Semiconductors ..... 553
12.7 Superconductors ..... 555


## 13

 PHYSICAL PROPERTIES OF SOLUTIONS 562
### 13.1 Types of Solutions <br> 564

### 13.2 The Solution Process 565

- Intermolecular Forces and Solubility 565
- Why Are Vitamins Referred to as Water Soluble and Fat Soluble? 568
- The Driving Force for Dissolution 568


### 13.3 Concentration Units <br> 569

- Molality 569 • Percent by Mass 569
- Comparison of Concentration Units 571
13.4 Factors That Affect Solubility 573
- Temperature 573 . Pressure 574


### 13.5 Colligative Properties 576

- Vapor-Pressure Lowering 576
- Boiling-Point Elevation 578
- Freezing-Point Depression 579 • Osmotic


Pressure 581 • Electrolyte Solutions 582

- Intravenous Fluids 584
- Hemodialysis 586
13.6 Calculations Using Colligative Properties 587
13.7 Colloids 590


## 14 CHEMICAL KINETICS 606

14.1 Reaction Rates 608

- Average Reaction Rate 608
- Instantaneous Rate 610
- Stoichiometry and Reaction Rate

612

### 14.2 Dependence of Reaction Rate on Reactant Concentration 615

- The Rate Law 615 • Experimental

Determination of the Rate Law 616
14.3 Dependence of Reactant Concentration on Time 620

- First-Order Reactions 620
- Second-Order Reactions 625
14.4 Dependence of Reaction Rate on Temperature 628
- Collision Theory 628

- The Arrhenius Equation 631
14.5 Reaction Mechanisms ..... 635
- Elementary Reactions 636 • Rate-Determining Step 636 • Experimental Support for Reaction Mechanisms 638 • Identifying Plausible Reaction Mechanisms 638 • Mechanisms with a Fast Initial Step 640
14.6 Catalysis ..... 643
- Heterogeneous Catalysis 643 • Homogeneous Catalysis ..... 645
- Enzymes: Biological Catalysts ..... 645
- Catalysis and Hangovers ..... 647
15 cHEMICAL EQUILIBRIUM ..... 662
15.1 The Concept of Equilibrium ..... 664
- How Do We Know that the Forward and Reverse Processes Are Ongoing in a System at Equilibrium? ..... 667
15.2 The Equilibrium Constant ..... 667
- Calculating Equilibrium Constants ..... 668
- Magnitude of the Equilibrium Constant ..... 671
15.3 Equilibrium Expressions ..... 672
- Heterogeneous Equilibria 672
Equilibrium Expressions ..... 673 • Equilibrium
Expressions Containing Only Gases ..... 676
15.4 Using Equilibrium Expressions to Solve Problems ..... 679
- Predicting the Direction of a Reaction ..... 679
- Calculating Equilibrium Concentrations ..... 680
Equilibrium (ice) Tables ..... 684
15.5 Factors that Affect Chemical Equilibrium ..... 689
- Addition or Removal of a Substance 689 • Changes in Volume and Pressure ..... 692
- Changes in Temperature ..... 694
Le Châtelier's Principle ..... 696
- What Happens to the Units in Equilibrium Constants? ..... 700
- Catalysis ..... 700
- Hemoglobin Production at High Altitude ..... 700


## 16 ACIDS AND BASES 718

16.1 Brønsted Acids and Bases ..... 720
16.2 The Acid-Base Properties of Water ..... 722
16.3 The pH Scale ..... 724

- Antacids and the pH Balance in Your Stomach ..... 728
16.4 Strong Acids and Bases ..... 729
- Strong Acids 730 • Strong Bases ..... 731
16.5 Weak Acids and Acid Ionization Constants ..... 735
- The Ionization Constant, $K_{a}$ ..... 735
- Calculating pH from $K_{a}$ ..... 736
Using Equilibrium Tables to Solve Problems ..... 738
- Percent lonization 740 • Using pH to Determine $K_{a}$ ..... 742
16.6 Weak Bases and Base Ionization Constants ..... 743
- The Ionization Constant, $K_{\mathrm{b}} 744$ • Calculating pH from $K_{\mathrm{b}} 744$ • Using pH to Determine $K_{\mathrm{b}} 745$
16.7 Conjugate Acid-Base Pairs ..... 746
- The Strength of a Conjugate Acid or Base747
- The Relationship between $K_{a}$ and $K_{b}$ of a Conjugate Acid-Base Pair ..... 747
16.8 Diprotic and Polyprotic Acids ..... 750
16.9 Molecular Structure and Acid Strength ..... 753
- Hydrohalic Acids 753 • Oxoacids 753 • Carboxylic Acids ..... 755
16.10 Acid-Base Properties of Salt Solutions ..... 756- Basic Salt Solutions 756 • Acidic Salt Solutions 757 • Neutral Salt
Solutions 759 • Salts in Which Both the Cation and the Anion Hydrolyze ..... 761
16.11 Acid-Base Properties of Oxides and Hydroxides ..... 761
- Oxides of Metals and Nonmetals ..... 761
- Basic and Amphoteric Hydroxides ..... 763
16.12 Lewis Acids and Bases ..... 763
17 ACID-BASE EQUILIBRIA AND SOLUBILITY EQUILIBRIA 778
17.1 The Common Ion Effect ..... 780
17.2 Buffer Solutions ..... 782
- Calculating the pH of a Buffer ..... 782
Buffer Solutions ..... 784
- Preparing a Buffer Solution with a
Specific pH ..... 787
■ Maintaining the pH of Blood ..... 788
17.3 Acid-Base Titrations ..... 790
- Strong Acid-Strong Base Titrations ..... 790
- Weak Acid-Strong Base Titrations ..... 792
- Strong Acid-Weak Base Titrations ..... 796
- Acid-Base Indicators ..... 798

17.4 Solubility Equilibria ..... 801
- Solubility Product Expression and $K_{\text {sp }} 801$. Calculations Involving $K_{\text {sp }}$ and Solubility 802 • Predicting Precipitation Reactions ..... 805
17.5 Factors Affecting Solubility ..... 807
- The Common lon Effect 807 • pH ..... 809
Common Ion Effect ..... 810
- Complex Ion Formation ..... 812
17.6 Separation of Ions Using Differences in Solubility ..... 817
- Fractional Precipitation 817 • Qualitative Analysis of Metal Ions in Solution ..... 818
18 ENTROPY, FREE ENERGY, AND EQUILIBRIUM ..... 832
18.1 Spontaneous Processes ..... 834
18.2 Entropy ..... 834
- A Qualitative Description of Entropy ..... 835
- A Quantitative Definition of Entropy ..... 835
18.3 Entropy Changes in a System ..... 836- Calculating $\Delta S_{\text {sys }} 836$ - StandardEntropy, $S^{\circ} 838$ • Qualitatively Predicting theSign of $\Delta S_{\text {sys }}^{\circ} 841$
Factors That Influence the Entropy of a System ..... 842
18.4 Entropy Changes in the Universe ..... 845
- Calculating $\Delta S_{\text {surr }} 846$. The Second Law of
Thermodynamics 846 • The Third Law of Thermodynamics 848

18.5 Predicting Spontaneity ..... 850- Gibbs Free-Energy Change, $\Delta G 850$ • Standard Free-Energy
Changes, $\Delta G^{\circ} 852$ • Using $\Delta G$ and $\Delta G^{\circ}$ to Solve Problems ..... 853
18.6 Free Energy and Chemical Equilibrium ..... 856
- Relationship Between $\Delta G$ and $\Delta G^{\circ}$ ..... 856
- Relationship Between $\Delta G^{\circ}$ and $K$ ..... 858
18.7 Thermodynamics in Living Systems ..... 861
19 ELECTROCHEMISTRY ..... 876
19.1 Balancing Redox Reactions ..... 878
19.2 Galvanic Cells ..... 881
Construction of a Galvanic Cell ..... 882
19.3 Standard Reduction Potentials ..... 884
19.4 Spontaneity of Redox Reactions Under Standard-State Conditions ..... 891
19.5 Spontaneity of Redox Reactions Under Conditions Other than Standard State ..... 895

- The Nernst Equation ..... 895
- Concentration Cells ..... 897
- Biological Concentration Cells ..... 898
19.6 Batteries ..... 900
- Dry Cells and Alkaline Batteries 900 • Lead Storage Batteries ..... 901
- Lithium-Ion Batteries 902 • Fuel Cells ..... 902
19.7 Electrolysis ..... 903
- Electrolysis of Molten Sodium Chloride 903 • Electrolysis of Water ..... 904
- Electrolysis of an Aqueous Sodium Chloride Solution 904 • Quantitative
Applications of Electrolysis ..... 906
19.8 Corrosion ..... 908
20 NUCLEAR CHEMISTRY ..... 922
20.1 Nuclei and Nuclear Reactions ..... 924
20.2 Nuclear Stability ..... 926
- Patterns of Nuclear Stability ..... 926
- Nuclear Binding Energy ..... 928
20.3 Natural Radioactivity ..... 931
- Kinetics of Radioactive Decay ..... 931
- Dating Based on Radioactive Decay ..... 932
20.4 Nuclear Transmutation ..... 934
20.5 Nuclear Fission ..... 937
Nuclear Fission and Fusion ..... 938
20.6 Nuclear Fusion ..... 943
20.7 Uses of Isotopes ..... 944
- Chemical Analysis 944 • Isotopes in Medicine ..... 945
20.8 Biological Effects of Radiation ..... 946
- Radioactivity in Tobacco ..... 947
21 ENVIRONMENTAL CHEMISTRY ..... 956
21.1 Earth's Atmosphere ..... 958
21.2 Phenomena in the Outer Layers of the Atmosphere ..... 960
- Aurora Borealis and Aurora Australis ..... 961
- The Mystery Glow of Space Shuttles ..... 962
21.3 Depletion of Ozone in the Stratosphere ..... 963
- Polar Ozone Holes ..... 964
21.4 Volcanoes ..... 966
21.5 The Greenhouse Effect ..... 967
21.6 Acid Rain ..... 971
21.7 Photochemical Smog ..... 973
21.8 Indoor Pollution ..... 974

22 cOORDINATION CHEMISTRY ..... 982
22.1 Coordination Compounds ..... 984
- Properties of Transition Metals ..... 984
- Ligands 986 • Nomenclature of Coordination
Compounds ..... 988
22.2 Structure of Coordination Compounds ..... 991
22.3 Bonding in Coordination Compounds: Crystal Field Theory ..... 993
- Crystal Field Splitting in OctahedralComplexes 994 • Color995
- Magnetic Properties ..... 996
- Tetrahedral and Square-Planar Complexes ..... 998

22.4 Reactions of Coordination Compounds ..... 999
22.5 Applications of Coordination Compounds ..... 999
- The Coordination Chemistry of Oxygen Transport ..... 1001
23.1 Occurrence of Metals ..... 1010
The Importance of Molybdenum ..... 1011
23.2 Metallurgical Processes ..... 1011- Preparation of the Ore 1011 . Production ofMetals 1011 • The Metallurgy of Iron 1012- Steelmaking 1013 • Purification of
Metals ..... 1014
23.3 Band Theory of Conductivity ..... 1016
- Conductors 1016 • Semiconductors ..... 1017
23.4 Periodic Trends in Metallic Properties ..... 1018
23.5 The Alkali Metals ..... 1019
23.6 The Alkaline Earth Metals ..... 1022- Magnesium 1022 • Calcium 1023
23.7 Aluminum 1023

24 NONMETALLIC ELEMENTS AND THEIR COMPOUNDS 1032
24.1 General Properties of Nonmetals ..... 1034
24.2 Hydrogen ..... 1034
- Binary Hydrides ..... 1035 • Isotopes of
Hydrogen 1036 • Hydrogenation ..... 1037
- The Hydrogen Economy ..... 1037
24.3 Carbon ..... 1038
24.4 Nitrogen and Phosphorus ..... 1039
- Nitrogen 1039 • Phosphorus ..... 1042
24.5 Oxygen and Sulfur ..... 1044
- Oxygen 1044 . Sulfur ..... 1047
24.6 The Halogens ..... 1050- Preparation and General Properties of the

Halogens 1051 • Compounds of the
Halogens 1053 • Uses of the Halogens ..... 1054


## 25 ORGANIC CHEMISTRY 1062

25.1 Why Carbon Is Different ..... 1064
25.2 Organic Compounds ..... 1066

- Classes of Organic Compounds ..... 1066
- Naming Organic Compounds ..... 1069
- How Do We Name Molecules with More Than One Substituent? ..... 1070
- How Do We Name Compounds with Specific Functional Groups? ..... 1072
25.3 Representing Organic Molecules ..... 1076
- Condensed Structural Formulas ..... 1077 •Kekulé
Structures 1077 • Skeletal Structures ..... 1077
- Resonance ..... 1079
25.4 Isomerism ..... 1082
- Constitutional Isomerism 1082 • Stereoisomerism ..... 1083
- Plane-Polarized Light and 3-D Movies ..... 1085
- Biological Activity of Enantiomers ..... 1086
25.5 Organic Reactions ..... 1087
- Addition Reactions 1087 • Substitution Reactions ..... 1089
$\mathrm{S}_{\mathrm{N}} 1$ Reactions ..... 1091
- Other Types of Organic Reactions ..... 1093
- The Chemistry of Vision ..... 1094
25.6 Organic Polymers ..... 1095
- Addition Polymers 1096 • Condensation Polymers ..... 1096
- Biological Polymers ..... 1098
Appendixes
1 Mathematical Operations ..... A-1
2 Thermodynamic Data at 1 ATM and $25^{\circ} \mathrm{C}$ ..... A-6
3 Solubility Product Constants at $25^{\circ} \mathrm{C}$ ..... A-12
4 Dissociation Constants for Weak Acids and Bases at $25^{\circ} \mathrm{C}$ ..... A-14
Glossary G-1
Answers to Odd-Numbered Problems ..... AP-1
Index ..... I-1



## Preface

Welcome to the exciting and dynamic world of Chemistry! My desire to create a general chemistry textbook grew out of my concern for the interests of students and faculty alike. Having taught general chemistry for many years, and having helped new teachers and future faculty develop the skills necessary to teach general chemistry, I believe I have developed a distinct perspective on the common problems and misunderstandings that students encounter while learning the fundamental concepts of chemistry-and that professors encounter while teaching them. I believe that it is possible for a textbook to address many of these issues while conveying the wonder and possibilities that chemistry offers. With this in mind, I have tried to write a text that balances the necessary fundamental concepts with engaging real-life examples and applications, while utilizing a consistent, step-by-step problem-solving approach and an innovative art and media program.

## Key Features

## Problem Solving Methodology

Sample Problems are worked examples that guide the student step-by-step through the process of solving problems. Each Sample Problem follows the same four-step method: Strategy, Setup, Solution, and Think About It (check).

Strategy: plan is laid out for solving the problem.

Setup: necessary information is gathered and organized.

Solution: problem is worked out.

## Think About It:

- Assess the result.
- Provides information that shows the relevance of the result or the technique.
- Sometimes shows an alternate route to the same answer.


## SAMPLE PROBLEM 4.8

For an aqueous solution of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$, determine (a) the molarity of 2.00 L of a solution that contains 50.0 g of glucose, (b) the volume of this solution that would contain 0.250 mol of glucose, and (c) the number of moles of glucose in 0.500 L of this solution. Strategy Convert the mass of glucose given to moles, and use the equations for interconversions of $M$, liters, and moles to calculate the answers. Setup The molar mass of glucose is 180.2 g

$$
\text { moles of glucose }=\frac{50.0 \mathrm{~g}}{180.2 \mathrm{~g} / \mathrm{mol}}=0.277 \mathrm{~mol}
$$

Solution (a) molarity $=\frac{0.227 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{2.00 \mathrm{~L} \text { solution }}=0.139 \mathrm{M}$
A common way to state the concentration of this solution is to say, "This solution is 0.139 M in glucose."
(b) volume $=\frac{0.250 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{0.139 \mathrm{M}}=1.80 \mathrm{~L}$
(c) moles of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in $0.500 \mathrm{~L}=0.500 \mathrm{~L} \times 0.139 \mathrm{M}=0.0695 \mathrm{~mol}$

## think About it

Check to see that the magnitudes of your answers are logical. For example, the mass given in the problem corresponds to 0.277 mol of solute. If you are asked, as in part (b), for the volume that contains a number of moles smaller than 0.277 , make sure your answer is smaller than the original volume.

Practice Problem ATTEMPT For an aqueous solution of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$, determine (a) the molarity of 5.00 L of a solution that contains 235 g of sucrose, (b) the volume of this solution that would contain 1.26 mol of sucrose, and (c) the number of moles of sucrose in 1.89 L of this solution.

Practice Problem BUILD For an aqueous solution of sodium chloride ( NaCl ), determine (a) the molarity of 3.75 L of a solution that contains 155 g of sodium chloride, (b) the volume (a) the molarity of 3.75 L of a solution that contains 155 g of sodium chloride, (b) the volume
of this solution that would contain 4.58 mol of sodium chloride, and (c) the number of moles of this solution that would contain 4.58 mol of
of sodium chloride in 22.75 L of this solution.

Practice Problem CONCEPTUALIZE The diagrams represent solutions of two different concentrations. What volume of solution 2 contains the same amount of solute as 5.00 mL of solution 1? What volume of solution 1 contains the same amount of solute as 30.0 mL of solution 2?


Each Sample Problem is followed by my ABC approach of three Practice Problems: Attempt, Build, and Conceptualize.

Practice Problem A (or "Attempt") asks the student to apply the same Strategy to solve a problem very similar to the Sample Problem. In general, the same Setup and series of steps in the Solution can be used to solve Practice Problem A.

Practice Problem B (or "Build") assesses mastery of the same skills as those required for the Sample Problem and Practice Problem A, but everywhere possible; Practice Problem B cannot be solved using the same Strategy used for the Sample Problem and for Practice Problem A. This provides the student an opportunity to develop a strategy independently, and combats the tendency that some students have to want to apply a "template" approach to solving chemistry problems. Practice Problems "Attempt" and "Build" have been incorporated into the problems available in Connect ( R ) and can be used in online homework and/or quizzing.
Practice Problem C (or "Conceptualize") provides an exercise that probes the student's conceptual understanding of the material. Practice Problems C often include concept and molecular art.

## ATTEMPT

## BUILD

## CONCEPTUALIZE

Each chapter's end-of-chapter questions and problems begin with an Integrative Problem, entitled Applying What You've Learned. These integrative problems incorporate multiple concepts from the chapter, with each step of the problem providing a specific reference to the appropriate Sample Problem in case the student needs direction.


## New Pedagogy

## Key Skills

Newly located immediately before the end-of-chapter problems, Key Skills pages are modules that provide a review of specific problem-solving techniques from that particular chapter. These are techniques the author knows are vital to success in later chapters. The Key Skills pages are designed to be easy for students to find touchstones to hone specific skills from earlier chapters-in the context of later chapters. The answers to the Key Skills Problems can be found in the Answer Appendix in the back of the book.


## New to the Fourth Edition

- New End-of-Chapter Problems have been added in response to user comments. These include additional conceptual problems, additional problems with limiting-reactant components, and updates of information in topical questions.
- Key Skills sections are newly located immediately before the end-of-chapter problems. These modules provide a review of specific problem-solving techniques that the author knows will be critical in later chapters. A unique approach, the context of these reviews combines that of the current chapter, and that of the later chapter(s) for which the specific skills will be important.
- Continued development of truly comprehensive and consistent problem-solving. Hundreds of worked examples (Sample Problems) help students get started learning how to approach and solve problems.
- Updated Table of Contents reflecting changes discussed in reviews and focus groups. The introduction of nomenclature has been reordered to put ionic compounds first-increasing the clarity of the subject for students.
- SmartBook ${ }^{\mathrm{TM}}$ with Learning Resources. Our adaptive SmartBook has been supplemented with additional learning resources tied to each learning objective to provide point-in-time help to students who need it.
- More consistent use of $\mathrm{H}_{3} \mathrm{O}^{+}$to represent the hydronium ion. In graphics where space constraints require use of $\mathrm{H}^{+}$, students are alerted to it and are reminded that the two different representations refer to the same aqueous species.

New and updated chapter content includes:
Incorporation of essential information from student notes into the main flow of text in each chapter. The remaining student notes are designed to help students over a variety of stumbling blocks. They include timely warnings about common errors, reminders of important information from previous chapters, and general information that helps place the material in an easily understood context.

Chapter 1—Expanded coverage of the treatment of units that are raised to powers
Chapter 2-Reorganization of nomenclature coverage
Chapter 3-New limiting-reactant problems
Chapter 4-New end-of-chapter problems, including limiting-reactant problems
Chapter 6-New chapter opener
Chapter 8-New problems involving polar molecules and percent ionic character
Chapter 9—New introduction of organic bond-line structures
Chapter 11—New Checkpoint questions
Chapter 13-New conceptual end-of-chapter problems
Chapter 14—New highly visual molecular-level illustrations of the effects of reactant concentration and temperature on reaction rate
Chapter 15-New conceptual end-of-chapter problems
Chapter 16-Consistent use of $\mathrm{H}_{3} \mathrm{O}^{+}$to represent the hydronium ion. In graphics where space constraints require use of $\mathrm{H}^{+}$, students are alerted to it and are reminded that the two different representations refer to the same aqueous species.
Chapter 18-New chapter opener and new conceptual end-of-chapter problems

## Student Resources

All students will have access to chemistry animations for the animated Visualizing Chemistry figures as well as other chemistry animations in Connect. Within the text, the animations are mapped to the appropriate content.

Students will have access to innovative applications of new educational technologies. Based on their instructor's choices, students will have access to electronic homework and guided practice through Connect. Available questions include a variety of conceptual, static and algorithmic content chosen by the instructors specifically for their students. Connect is also a portal for McGraw-Hill SmartBook ${ }^{\circledR}$, an exciting adaptive reading experience that formulates an individualized learning path for each student through an easy, intuitive interface and real-time diagnostic exercises.

Additionally, students can purchase a Study Guide containing material to practice problemsolving skills and a Student Solution Manual that contains detailed solutions and explanations for the odd-numbered problems in the main text.

For me, this text will always remain a work in progress. I encourage you to contact me with any comments or questions.

Julia Burdge
juliaburdge@hotmail.com

## Required=Results



## McGraw-Hill Connect ${ }^{\circ}$ Learn Without Limits

Connect is a teaching and learning platform that is proven to deliver better results for students and instructors.

Connect empowers students by continually adapting to deliver precisely what they need, when they need it, and how they need it, so your class time is more engaging and effective.

Course outcomes improve with Connect.

$88 \%$ of instructors who use Connect require it; instructor satisfaction increases by $38 \%$ when Connect is required.

## Analytics

## Connect Insight ${ }^{\circ}$

Connect Insight is Connect's new one-of-a-kind visual analytics dashboard-now available for both instructors and students-that provides at-a-glance information regarding student performance, which is immediately actionable. By presenting assignment, assessment, and topical performance results together with a time metric that is easily visible for aggregate or individual results, Connect Insight gives the user the ability to take a just-in-time approach to teaching and learning, which was never before available. Connect Insight presents data that empowers students and helps instructors improve class performance in a way that is efficient and effective.

Connect helps students achieve better grades


Based on McGraw-Hill Education Connect Effectiveness Study 2013

Students can view their results for any Connect course.

## Mobile

Connect's new, intuitive mobile interface gives students and instructors flexible and convenient, anytime-anywhere access to all components of the Connect platform.


## Adaptive



More students earn A's and B's when they use McGraw-Hill Education Adaptive products.

## SmartBook ${ }^{\circledR}$

Proven to help students improve grades and study more efficiently, SmartBook contains the same content within the print book, but actively tailors that content to the needs of the individual. SmartBook's adaptive technology provides precise, personalized instruction on what the student should do next, guiding the student to master and remember key concepts, targeting gaps in knowledge and offering customized feedback, and driving the student toward comprehension and retention of the subject matter. Available on smartphones and tablets, SmartBook puts learning at the student's fingertips-anywhere, anytime.

Over 4 billion questions have been answered, making McGraw-Hill Education products more intelligent, reliable, and precise.

THE FIRST AND ONLY ADAPTIVE READING EXPERIENCE DESIGNED TO TRANSFORM THE WAY STUDENTS READ

of students reported SmartBook to be a more effective way of reading material

of students want to use the Practice Quiz feature available within SmartBook to help them study

of students reported having reliable access to off-campus wifi

## 90\%

of students say they would purchase
SmartBook over print alone


[^0]
## Acknowledgments

I wish to thank the many people who have contributed to the continued development of this text. Raymond Chang's ongoing commitment and Jason Overby's tireless work on the development and demonstration of the book's digital content continue to ensure and augment the quality of this endeavor.

My family, as always, continues to be there for me-no matter what.
Finally, I wish to thank my McGraw-Hill family, for their continued confidence and support. This family consists of Managing Director Thomas Timp, Director of Chemistry David Spurgeon, Director of Marketing Tami Hodge, Product Developer Robin Reed, Content Project Manager Sherry Kane, Program Manager Lora Neyens, and Senior Designer David Hash.

## Reviewers and Contributors

Thanks to the many people who have contributed to the development of the fourth edition through content reviews:

Kevin Alliston, Wichita State University
Jim Bann, Wichita State University
Dana Chatellier, University of Delaware
Nagash Clarke, Washtenaw Community College
Eric Crumpler, Valencia College
Christopher Culbertson, Kansas State University
Millie Delgado, Florida International University

Andy Frazer, University of Central Florida Brian Gute, University of Minnesota Duluth Ganesh Lakshminarayan, College of Western Idaho Brian Leskiw, Youngstown State University Will Lewis, Reynolds Community College Shawn Phillips, Vanderbilt Van Quach, Seminole State College

The following individuals helped write and review learning goal-oriented content for LearnSmart for General Chemistry:
David G. Jones, Vistamar School
Adam I. Keller, Columbus State Community College

## Credits:

## About the Author

Page iii: Courtesy of Julia Burdge.

## Contents

Page vi: Washington State History Research Center; p. vii (top): © ac bnphotos/iStock/Getty Images; p. vii (bottom): © Zigy Kaluzny/The Image Bank/Getty Images; p. viii (top): © Andrew Harrer/Bloomberg via Getty Images; p. viii (bottom): © Tom Mareschal/Photographer's Choice/Getty Images; p. ix: © Science Source; p. x (top): © PM Images/Getty Images; p. x (bottom): © Dinodia Photos/Alamy; p. xi: © Jamie Grill/Getty Images; p. xii: © Georgette Douwma/Getty Images; p. xiii (top): © N I Qin/ Getty Images; p. xiii (bottom): © Jonas Ekstromer/AFP/Getty; p. xiv (top): © AJPhoto/Science Source; p. xiv (bottom): © Clark Brennan/Alamy; p. xv: © Brand X/JupiterImages; p. xvi: © Eco Images/Getty Images; p. xvii (top): © BananaStock/PunchStock; p. xvii (bottom): © Laurel Latto; p. xviii (top): © TEK IMAGE/Science Photo Library/Getty Images; p. xviii (bottom): © Medical Body Scans/Science Source; p. xix (top): © Digital Vision/Getty Images; p. xix (bottom): © Robert George Young/Getty; p. xx (top): © David A. Tietz/Editorial Image, LLC; p. xx (bottom): © Science Source; p. xxi: Courtesy of Julia Burdge.

## Preface

Page xxvi: © Hero Images/Getty Images.

## Chemistry



## Classification of Matter

- States of Matter
- Elements
- Compounds
- Mixtures

Scientific Measurement

- SI Base Units
- Mass
- Temperature
- Derived Units: Volume and Density

The Properties of Matter

- Physical Properties
- Chemical Properties
- Extensive and Intensive Properties

Uncertainty in Measurement

- Significant Figures
- Calculations with Measured Numbers
- Accuracy and Precision

Using Units and Solving Problems

- Conversion Factors
- Dimensional Analysis—Tracking Units

The "Epidemic Memorial" masks, on display at the Washington State History Museum in Tacoma, Washington, were created by five Native American artists. They represent the effects of smallpox and other diseases on the Native American population.

Credit: Washington State History Research Center.

## In This Chapter, You Will Learn

Some of what chemistry is and how it is studied using the scientific method. You will learn about the system of units used by scientists and about expressing and dealing with the numbers that result from scientific measurements.

Before You Begin, Review These Skills

- Basic algebra
- Scientific notation [WM Appendix 1]


## How the Scientific Method Helped Defeat Smallpox

To advance understanding of science, researchers use a set of guidelines known as the scientific method. The guidelines involve careful observations, educated reasoning, and the development of hypotheses and theories, which must undergo extensive testing. One of the most compelling examples of the success of the scientific method is the story of smallpox.

Smallpox is one of the diseases classified by the Centers for Disease Control and Prevention (CDC) as a Category A bioterrorism agent. This disease has had an immeasurable impact on human history. During the sixteenth century, European explorers brought smallpox with them to the Americas, devastating native populations and leaving them vulnerable to attack-in effect, shaping the conquest of the New World. In the twentieth century alone, the disease killed an estimated half a billion people worldwide-leaving many more permanently disfigured, blind, or both.

Late in the eighteenth century, an English doctor named Edward Jenner observed that even during outbreaks of smallpox in Europe, milkmaids seldom contracted the disease. He reasoned that when people who had frequent contact with cows contracted cowpox, a similar but far less harmful disease, they developed a natural immunity to smallpox. He predicted that intentional exposure to the cowpox virus would produce the same immunity. In 1796, Jenner exposed an 8 -year-old boy named James Phipps to the cowpox virus using pus from the cowpox lesions of a milkmaid named Sarah Nelmes. Six weeks later, when Jenner then exposed Phipps to the smallpox virus, the boy did not contract the disease. Subsequent experiments using the same technique (later dubbed vaccination from the Latin vacca meaning "cow") confirmed that immunity to smallpox could be induced.

The last naturally occurring case of smallpox occurred in 1977 in Somalia. In 1980, the World Health Organization declared smallpox officially eradicated. This historic triumph over a dreadful disease, one of the greatest medical advances of the twentieth century, began with Jenner's astute observations, inductive reasoning, and careful experimentation-the essential elements of the scientific method.


Until recently, almost everyone had a smallpox vaccine scar-usually on the upper arm.
Credit: © Chris Livingston/Getty Images.

Student Note: Category A agents are those believed to pose the greatest potential threat to the public and that have a moderate to high potential for large-scale dissemination.

Student Note: Although naturally occurring smallpox was wiped out worldwide, samples have been kept in research laboratories in the United States and the former Soviet Union, and several countries are now thought to have unauthorized stockpiles of the virus.

At the end of this chapter, you will be able to answer several questions related to the smallpox vaccine [ $\mathrm{H} \mid$ Applying What You've Learned, page 30].

### 1.1 The Study of Chemistry

Chemistry often is called the central science because knowledge of the principles of chemistry can facilitate understanding of other sciences, including physics, biology, geology, astronomy, oceanography, engineering, and medicine. Chemistry is the study of matter and the changes that matter undergoes. Matter is what makes up our bodies, our belongings, our physical environment, and in fact our universe. Matter is anything that has mass and occupies space.

## Chemistry You May Already Know

You may already be familiar with some of the terms used in chemistry. Even if this is your first chemistry course, you may have heard of molecules and know them to be tiny pieces of a substance-much too tiny to see. Further, you may know that molecules are made up of atoms, even smaller pieces of matter. And even if you don't know what a chemical formula is, you probably know that $\mathrm{H}_{2} \mathrm{O}$ is water. You may have used, or at least heard, the term chemical reaction; and you are undoubtedly familiar with a variety of chemical reactions, such as those shown in Figure 1.1.

The reactions in Figure 1.1 are all things that you can observe at the macroscopic level. In other words, these processes and their results are visible to the human eye. In studying chemistry, you will learn to visualize and understand these same processes at the molecular level.

Although it can take many different forms, all matter consists of various combinations of atoms of only a relatively small number of simple substances called elements. The properties of matter depend on which of these elements it contains and on how the atoms of those elements are arranged.

## The Scientific Method

Experiments are the key to advancing our understanding of chemistry-or any science. Although not all scientists will necessarily take the same approach to experimentation, they all follow a set of guidelines known as the scientific method to add their results to the larger body of knowledge

(a)

(b)

(c)

(d)

(e)

Figure 1.1 Many familiar processes are chemical reactions: (a) The flame of a gas stove is the combustion of natural gas, which is primarily methane. (b) The bubbles produced when Alka-Seltzer dissolves in water are carbon dioxide, produced by a chemical reaction between two ingredients in the tablets. (c) The formation of rust is a chemical reaction that occurs when iron, water, and oxygen are all present. (d) Many baked goods "rise" as the result of a chemical reaction that produces carbon dioxide. (e) The glow produced when luminol is used to detect traces of blood in crime-scene investigations is the result of a chemical reaction.
Credit: a: © Steve Allen/Getty Images; b: © McGraw-Hill Education/ Charles D. Winters, photographer; c: © Stockbyte/PunchStock; d: © Danilo Calilung/Corbis; e: © Jochen Tack/Alamy.

## What Do Molecules Look Like?

Molecules are far too small for us to observe them directly. An effective means of visualizing them is by the use of molecular models. Throughout this book, we will represent matter at the molecular level using molecular art, the two-dimensional equivalent of molecular models. In these pictures, atoms are represented as spheres, and atoms of particular elements are represented using specific colors. Table 1.1 lists some of the elements that you will encounter most often and the colors used to represent them in this book.

Molecular art can be of ball-and-stick models, in which the bonds connecting atoms appear as sticks [Figure 1.2(b)], or of space-filling models, in which the atoms appear to overlap one another [Figure 1.2(c)]. Ball-and-stick and space-filling models

## TABLE 1.1

Colors of Elements Commonly Used in Molecular Art

illustrate the specific, three-dimensional arrangement of the atoms. The ball-and-stick model does a good job of illustrating the arrangement of atoms, but exaggerates the distances between atoms, relative to their sizes. The space-filling model gives a more accurate picture of these interatomic distances but can obscure the details of the three-dimensional arrangement.
(a)

(b)

(c)

Figure 1.2 Water represented with a (a) molecular formula, (b) ball-and-stick model, and (c) space-filling model.
within a given field. The flowchart in Figure 1.3 illustrates this basic process. The method begins with the gathering of data via observations and experiments. Scientists study these data and try to identify patterns or trends. When they find a pattern or trend, they may summarize their findings with a law, a concise verbal or mathematical statement of a reliable relationship between phenomena. Scientists may then formulate a hypothesis, a tentative explanation for their observations. Further experiments are designed to test the hypothesis. If experiments indicate that the hypothesis is incorrect, the scientists go back to the drawing board, try to come up with a different


Figure 1.3 Flowchart of the scientific method.

Student Note: Some books refer to substances as pure substances. These two terms generally mean the same thing although the adjective pure is unnecessary in this context because a substance is, by definition, pure.


Animation
Matter-three states of matter.


Figure 1.4 Molecular-level illustrations of a solid, liquid, and gas.
interpretation of their data, and formulate a new hypothesis. The new hypothesis will then be tested by experiment. When a hypothesis stands the test of extensive experimentation, it may evolve into a theory. A theory is a unifying principle that explains a body of experimental observations and the laws that are based on them. Theories can also be used to predict related phenomena, so theories are constantly being tested. If a theory is disproved by experiment, then it must be discarded or modified so that it becomes consistent with experimental observations.

### 1.2 Classification of Matter

Chemists classify matter as either a substance or a mixture of substances. A substance may be further categorized as either an element or a compound. A substance is a form of matter that has a definite (constant) composition and distinct properties. Examples are salt (sodium chloride), iron, water, mercury, carbon dioxide, and oxygen. Substances can be either elements (such as iron, mercury, and oxygen) or compounds (such as salt, water, and carbon dioxide). They differ from one another in composition and can be identified by appearance, smell, taste, and other properties.

## States of Matter

All substances can, in principle, exist as a solid, a liquid, and a gas, the three physical states depicted in Figure 1.4. Solids and liquids sometimes are referred to collectively as the condensed phases. Liquids and gases sometimes are referred to collectively as fluids. In a solid, particles are held close together in an orderly fashion with little freedom of motion. As a result, a solid does not conform to the shape of its container. Particles in a liquid are close together but are not held rigidly in position; they are free to move past one another. Thus, a liquid conforms to the shape of the part of the container it fills. In a gas, the particles are separated by distances that are very large compared to the size of the particles. A sample of gas assumes both the shape and the volume of its container.

The three states of matter can be interconverted without changing the chemical composition of the substance. Upon heating, a solid (e.g., ice) will melt to form a liquid (water). Further heating will vaporize the liquid, converting it to a gas (water vapor). Conversely, cooling a gas will cause it to condense into a liquid. When the liquid is cooled further, it will freeze into the solid form. Figure 1.5 shows the three physical states of water.


Figure 1.5 Water as a solid (ice), liquid, and gas. (We can't actually see water vapor, any more than we can see the nitrogen and oxygen that make up most of the air we breathe. When we see steam or clouds, what we are actually seeing is water vapor that has condensed upon encountering cold air.) Credit: © McGraw-Hill Education/Charles D. Winters, photographer.

## Elements

An element is a substance that cannot be separated into simpler substances by chemical means. Iron, mercury, oxygen, and hydrogen are just 4 of the 118 elements that have been identified. Most of the known elements occur naturally on Earth. The others have been produced by scientists via nuclear processes, which are discussed in Chapter 20. As shown in Figure 1.6(a) and (b), an element may consist of atoms or molecules.

For convenience, chemists use symbols of one or two letters to represent the elements. Only the first letter of an element's chemical symbol is capitalized. A list of the elements and their symbols appears on the inside front cover of this book. The symbols of some elements are derived from their Latin names-for example, Ag from argentum (silver), Pb from plumbum (lead), and Na from natrium (sodium) -while most of them come from their English names-for example, H for hydrogen, Co for cobalt, and Br for bromine.

## Compounds

Most elements can combine with other elements to form compounds. Hydrogen gas, for example, burns in the presence of oxygen gas to form water, which has properties that are distinctly different from those of either hydrogen or oxygen. Thus, water is a compound, a substance composed of atoms of two or more elements chemically united in fixed proportions [Figure 1.6(c)]. The elements that make up a compound are called the compound's constituent elements. For example, the constituent elements of water are hydrogen and oxygen.

A compound cannot be separated into simpler substances by any physical process. (A physical process [ $n$ Section 1.4] is one that does not change the identity of the matter. Examples of physical processes include boiling, freezing, and filtering.) Instead, the separation of a compound into its constituent elements requires a chemical reaction.

## Mixtures

A mixture is a combination of two or more substances [Figure 1.6(d)] in which the substances retain their distinct identities. Like pure substances, mixtures can be solids, liquids, or gases. Some familiar examples are mixed nuts, 14-carat gold, apple juice, milk, and air. Mixtures do not have a universal constant composition. Therefore, samples of air collected in different locations will differ in composition because of differences in altitude, pollution, and other factors. Various brands of apple juice may differ in composition because of the use of different varieties of apples, or there may be differences in processing and packaging, and so on.

Mixtures are either homogeneous or heterogeneous. When we dissolve a teaspoon of sugar in a glass of water, we get a homogeneous mixture because the composition of the mixture is uniform throughout. If we mix sand with iron filings, however, the sand and the iron filings remain distinct and discernible from each other (Figure 1.7). This type of mixture is called a heterogeneous mixture because the composition is not uniform.


Figure 1.7 (a) A heterogeneous mixture contains iron filings and sand. (b) A magnet is used to separate the iron filings from the mixture.
Credit: © McGraw-Hill Education/Charles D. Winters, photographer.


Figure 1.6 (a) Isolated atoms of an element. (b) Molecules of an element. (c) Molecules of a compound, consisting of more than one element. (d) A mixture of atoms of an element and molecules of an element and a compound.

Student Note: A compound may consist of molecules or ions, which we will discuss in Chapter 2.

Figure 1.8 Flowchart for the classification of matter.

Student Note: According to the U.S. Metric Association (USMA), the United States is "the only significant holdout" with regard to adoption of the metric system. The other countries that continue to use traditional units are Myanmar (formerly Burma) and Liberia.


Mixtures, whether homogeneous or heterogeneous, can be separated by physical means into pure components without changing the identities of the components. Thus, sugar can be recovered from a water solution by evaporating the solution to dryness. Condensing the vapor will give us back the water component. To separate the sand-iron mixture, we can use a magnet to remove the iron filings from the sand, because sand is not attracted to the magnet [see Figure 1.7(b)]. After separation, the components of the mixture will have the same composition and properties as they did prior to being mixed. The relationships among substances, elements, compounds, and mixtures are summarized in Figure 1.8.

### 1.3 Scientific Measurement

Scientists use a variety of devices to measure the properties of matter. A meterstick is used to measure length; a burette, pipette, graduated cylinder, and volumetric flask are used to measure volume (Figure 1.9); a balance is used to measure mass; and a thermometer is used to measure temperature. Properties that can be measured are called quantitative properties because they are expressed using numbers. When we express a measured quantity with a number, though, we must always include the appropriate unit; otherwise, the measurement is meaningless. For example, to say that the depth of a swimming pool is 3 is insufficient to distinguish between one that is 3 feet ( 0.9 meter) and one that is 3 meters ( 9.8 feet) deep. Units are essential to reporting measurements correctly.

The two systems of units with which you are probably most familiar are the English system (foot, gallon, pound, etc.) and the metric system (meter, liter, kilogram, etc.). Although there has been an increase in the use of metric units in the United States in recent years, English units still are used commonly. For many years, scientists recorded measurements in metric units, but in 1960, the General Conference on Weights and Measures, the international authority on units, proposed a revised metric system for universal use by scientists. We will use both metric and revised metric (SI) units in this book.

## SI Base Units

The revised metric system is called the International System of Units (abbreviated SI, from the French Système Internationale d'Unités). Table 1.2 lists the seven SI base units. All other units of measurement can be derived from these base units. The SI unit for volume, for instance, is derived by cubing the SI base unit for length. The prefixes listed in Table 1.3 are used to denote decimal fractions and multiples of SI units. This enables scientists to tailor the magnitude of a unit to a particular application. For example, the meter (m) is appropriate for describing the dimensions of a classroom, but the kilometer (km), 1000 m , is more appropriate for describing the distance between two cities. Units that you will encounter frequently in the study of chemistry include those for mass, temperature, volume, and density.

## Mass

Although the terms mass and weight often are used interchangeably, they do not mean the same thing. Strictly speaking, weight is the force exerted by an object or sample due to gravity.

| TABLE 1.2 | Base SI Units |  |
| :--- | :--- | :--- |
| Base Quantity | Name of Unit | Symbol |
| Length | meter | m |
| Mass | kilogram | kg |
| Time | second | s |
| Electric current | ampere | A |
| Temperature | kelvin | K |
| Amount of substance | mole | mol |
| Luminous intensity | candela | cd |

Student Note: Only one of the seven SI base units, the kilogram, itself contains a prefix.

## TABLE 1.3 Prefixes Used with SI Units

| Prefix | Symbol | Meaning | Example |
| :--- | :---: | :--- | :--- |
| Tera- | T | $1 \times 10^{12}(1,000,000,000,000)$ | 1 teragram $(\mathrm{Tg})=1 \times 10^{12} \mathrm{~g}$ |
| Giga- | G | $1 \times 10^{9}(1,000,000,000)$ | 1 gigawatt $(\mathrm{GW})=1 \times 10^{9} \mathrm{~W}$ |
| Mega- | M | $1 \times 10^{6}(1,000,000)$ | 1 megahertz $(\mathrm{MHz})=1 \times 10^{6} \mathrm{~Hz}$ |
| Kilo- | k | $1 \times 10^{3}(1,000)$ | 1 kilometer $(\mathrm{km})=1 \times 10^{3} \mathrm{~m}$ |
| Deci- | d | $1 \times 10^{-1}(0.1)$ | 1 deciliter $(\mathrm{dL})=1 \times 10^{-1} \mathrm{~L}$ |
| Centi- | c | $1 \times 10^{-2}(0.01)$ | 1 centimeter $(\mathrm{cm})=1 \times 10^{-2} \mathrm{~m}$ |
| Milli- | m | $1 \times 10^{-3}(0.001)$ | 1 millimeter $(\mathrm{mm})=1 \times 10^{-3} \mathrm{~m}$ |
| Micro- | $\mu$ | $1 \times 10^{-6}(0.000001)$ | 1 microliter $(\mu \mathrm{L})=1 \times 10^{-6} \mathrm{~L}$ |
| Nano- | n | $1 \times 10^{-9}(0.000000001)$ | 1 nanosecond $(\mathrm{ns})=1 \times 10^{-9} \mathrm{~s}$ |
| Pico- | p | $1 \times 10^{-12}(0.000000000001)$ | 1 picogram $(\mathrm{pg})=1 \times 10^{-12} \mathrm{~g}$ |

Figure 1.9 (a) A volumetric flask is used to prepare a precise volume of a solution for use in the laboratory. (b) A graduated cylinder is used to measure a volume of liquid. It is less precise than the volumetric flask. (c) A volumetric pipette is used to deliver a precise amount of liquid. (d) A burette is used to measure the volume of a liquid that has been added to a container. A reading is taken before and after the liquid is delivered, and the volume delivered is determined by subtracting the first reading from the second.


Volumetric flask
(a)


Graduated cylinder
(b)


Pipette
(c)


Burette
(d)


[^0]:    reported that SmartBook would impact their study skills in a positive way

